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Objectives: Colorectal cancer (CRC) is a common malignancy with worldwide prevalence. Familial ade-
nomatous polyposis (FAP), a predisposition syndrome of CRC, is caused by germ line mutations in the APC
gene. Mutations in APC are thought to be an early event in colorectal tumorigenesis. We hypothesized that
common variants in APC might be associated with CRC.

Design and methods: A case-control study genotyping ten SNPs was conducted in 312 CRC patients and
270 normal controls in the Chinese Han population.

Results: The genotype frequency of rs2019720 showed a significant difference between cases and controls
(p=0.046, after Bonferroni correction). For the three pairs of SNPs in strong LD, we carried out haplotype anal-
yses but no significant association was detected.

Conclusion: Our results suggest that APC polymorphisms might be associated with CRC in the Chinese Han

population.
© 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Introduction

Colorectal cancer (CRC) is a common cancer and is also one of the
leading causes of cancer-related death worldwide [1]. In Asia the inci-
dence of CRC has been on the increase in recent decades [2]. Most
cases of CRC occur sporadically whereas approximately 5% of the cases
are due to the inherited genetic alterations [3], suggesting the combined
contribution of genes and environment. In order to allow effective can-
cer prevention programs, intensive studies into the development of CRC
and tumor progression are imperative.

Familial adenomatous polyposis (FAP), amodel of CRCdevelopment,
is inherited as an autosomal dominant disease [4]. The adenomatous
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polyposis coli (APC) gene, a tumor suppressor gene, plays a key role in
FAP [5]. In about 80% of individuals suffering from this syndrome, a
germ line mutation can be observed in the APC gene [6]. This mutation
leads to the development of thousands of colorectal adenomas and the
initiation of the event for sporadic colorectal tumorigenesis [7]. Muta-
tions in APC are also identified in approximately 18% of somatic breast
cancers [8]. Approximately 25% of breast cancer patients suffer loss of
heterozygosity (LOH) at the APC locus [8].

The APC gene is located at chromosome 5q21–q22, encoding a large
protein which has multiple functional domains. Previous research has
confirmed that APC provides protection against carcinogenesis [9,10].
A major clue came from the finding that the APC protein was associated
with β-catenin [11]. Studies revealed that β-catenin interacted with
transcriptional factors belonging to the TCF/LEF family, activating the
transcription of many target genes such as C-MYC, Cyclin D1, BMP4
and CD44 [12]. The discovery that APC regulates β-catenin levels after
its re-introduction into CRC cells suggests that APC is involved in the reg-
ulation of cell growth [13]. Moreover, APC functions at enhancers to di-
rectly repress Wnt target genes through a complex with the β-TrCP
protein, in competition with β-catenin-activating complexes [14].

While APC acts as an antagonist in the Wnt-signaling pathway, this
protein is also believed to affect cell adhesion, cell migration and
d by Elsevier Inc. All rights reserved.
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chromosome stability. The C-terminus of APC has been found to interact
with the microtubule binding protein EB1, mediating the stabilization
of microtubules [15]. Loss of APC function is suspected to contribute
to chromosome instability, through the altering of chromosome segre-
gation at low levels [12]. APC regulation of such cell processes impli-
cates its role in tumor formation. Although germ line mutations in the
APC gene are found only in the settings of FAP and attenuated FAP
[16], it is possible that variants in the APC gene are related to CRC,
most (~95%) of which are found in non-hereditary cases.

To date, very few studies have focused on the APC polymorphisms
in Chinese subjects. The present study was designed to investigate the
association between common genetic variants in the APC gene and an
increased risk of CRC. We examined ten single nucleotide polymor-
phisms (SNPs) of the APC gene in CRC patients compared with healthy
controls in the Chinese Han population.
Material and methods

Subjects

The case group used in this study was composed of 312 sporadic
CRC patients (178 males and 134 females, age: 61.23±14.03 years).
Each of these patients has no family history of CRC, i.e. none of their
sibling, mother or father has suffered from CRC. The control group
consisted of 270 healthy controls (145 males and 125 females, age:
43.53±7.94 years). All subjects recruited were of Han Chinese origin.
All the CRC patients had been treated with curative resection between
1999 and 2007 at the surgical department of Shanghai First People's
Hospital or Shanxi People's Hospital, China. The pathologic tumor
staging was performed according to Duke's criteria. Informed consent
was obtained from all participants for the genetic analysis. The study
protocol was reviewed and approved by the ethics committee of the
Table 1
The distributions of genotypes and alleles for the ten SNPs in the APC gene.

SNP (location) Genotype frequency χ2 p va

rs2019720 (intron) AA AG GG
CRC 29(0.128) 77(0.339) 121(0.533) 10.774 0.00
NZ 29(0.112) 126(0.485) 105(0.404)

rs6594646 (intron) AA AG GG
CRC 29(0.105) 102(0.371) 144(0.524) 6.163 0.04
NZ 27(0.105) 122(0.473) 109(0.422)

rs4705486 (intron) GG GT TT
CRC 138(0.517) 101(0.378) 28(0.105) 3.119 0.21
NZ 116(0.441) 117(0.445) 30(0.114)

rs2464803 (intron) CC CT TT
CRC 141(0.483) 117(0.401) 34(0.116) 1.209 0.54
NZ 119(0.442) 120(0.446) 30(0.112)

rs2229992 (exon) CC CT TT
CRC 132(0.520) 91(0.358) 31(0.122) 4.519 0.10
NZ 115(0.437) 118(0.449) 30(0.114)

rs351771 (exon) CC CT TT
CRC 13(0.048) 71(0.263) 186(0.689) 3.016 0.22
NZ 8(0.030) 86(0.321) 174(0.649)

rs41115 (exon) CC CT TT
CRC 6(0.029) 50(0.243) 150(0.728) 2.376 0.30
NZ 9(0.035) 77(0.303) 168(0.661)

rs42427 (exon) AA AG GG
CRC 189(0.730) 62(0.239) 8(0.031) 2.907 0.23
NZ 172(0.662) 79(0.304) 9(0.035)

rs459552 (exon) AA AT TT
CRC 2(0.008) 33(0.124) 231(0.868) 1.924 0.38
NZ 2(0.008) 43(0.167) 213(0.826)

rs465899 (exon) CC CT TT
CRC 11(0.038) 77(0.269) 198(0.692) 1.485 0.47
NZ 7(0.027) 80(0.310) 171(0.663)

*Pearson's p value, significant p (b0.05) values are in boldface, CRC: colorectal cancer, NZ:
Human Genetics Center in Shanghai. DNA extraction was carried out
according to standard procedures with phenol/chloroform purification.

Genotyping

The genetic polymorphisms we examined include four intronic
SNPs (rs2019720, rs6594646, rs4705486, rs2464803) and six exonic
SNPs (rs2229992, rs351771, rs41115, rs42427, rs459552, rs465899)
which had been reported by Chen et al. [17]. SNPs were selected
from the NCBI dbSNP database (http://www.ncbi.nlm.nih.gov/SNP/)
to cover a region of about 102.9 kb. All ten SNPs were genotyped
using the TaqMan® assay method on the ABI 7900 DNA detection sys-
tem (Applied Biosystems, Foster City, CA). Probes and primers were
designed by the Assay-on-Design service of Applied Biosystems. The
standard PCRwas performed using the Taqman®Universal PCRMaster
Mix (Applied Biosystems) reagent. Cycle parameters were 10-min,
95 °C step required to activate AmpliTaq Gold enzyme, followed
by 45 cycles with 15 s at 95 °C denaturation and 1 min at 60 °C
annealing/extension.

Statistical analysis

We used SHEsis (http://202.120.31.177/myanalysis.php) to analyze
Hardy–Weinberg equilibrium, allelic and genotypic distributions and
pairwise linkage disequilibrium [18]. This online software integrates ef-
ficient analysis tools for case-control studies and implements a Monte
Carlo simulation strategy [19]. The discrepancies of allele and genotype
frequency between CRC patients and controls were compared using a
χ2 test. Linkage disequilibrium (LD) of all pairs of SNPs was estimated
with D′ as the standardized measurement. Odds ratios (ORs) and their
95% confidence intervals (CIs) were also calculated. Haplotype recon-
struction was initially performed on the Haploview program [20] and
further analysis was carried out on SHEsis. For all analyses, p values
lue* Allele frequency χ2 p value* Odds ratio (95%CI)

A G
46 135(0.297) 319(0.703) 3.512 0.061 1.29 (0.99–1.69)

184(0.354) 336(0.646)
A G

6 160(0.291) 390(0.709) 3.105 0.078 1.26 (0.97–1.63)
176(0.341) 340(0.659)
G T

0 377(0.706) 157(0.294) 2.217 0.136 0.82 (0.63–1.06)
349(0.663) 177(0.337)
C T

6 399(0.683) 185(0.317) 0.404 0.525 1.08 (0.84–1.39)
358(0.665) 180(0.335)
C T

4 355(0.699) 153(0.301) 1.645 0.200 0.84 (0.65–1.09)
348(0.662) 178(0.338)
C T

1 97(0.180) 443(0.820) 0.203 0.652 0.93 (0.68–1.27)
102(0.190) 434(0.810)
C T

5 62(0.150) 350(0.850) 2.144 0.143 0.77 (0.54–1.09)
95(0.187) 413(0.813)
A G

4 440(0.849) 78(0.151) 2.394 0.122 0.77 (0.56–1.07)
423(0.813) 97(0.187)
A T

2 37(0.070) 495(0.930) 1.648 0.199 0.75 (0.48–1.17)
47(0.091) 469(0.909)
C T

6 99(0.173) 473(0.827) 0.154 0.695 0.94 (0.69–1.28)
94(0.182) 422(0.818)

normal control.
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Table 2
Estimation of linkage disequilibrium of the ten SNPs.

rs2019720 rs6594646 rs4705486 rs2464803 rs2229992 rs351771 rs41115 rs42427 rs459552 rs465899

rs2019720 – 0.995 0.863 0.921 0.917 0.735 0.901 0.882 0.948 0.768
rs6594646 0.961 – 0.873 0.901 0.899 0.745 0.895 0.860 0.952 0.735
rs4705486 0.727 0.738 – 0.799 0.777 0.771 0.746 0.717 0.976 0.753
rs2464803 0.825 0.808 0.616 – 0.945 0.876 1.000 1.000 0.953 0.881
rs2229992 0.820 0.801 0.578 0.885 – 0.776 0.909 0.917 0.780 0.760
rs351771 0.249 0.268 0.293 0.362 0.296 – 0.861 0.880 1.000 1.000
rs41115 0.335 0.344 0.245 0.434 0.363 0.697 – 0.984 0.852 0.867
rs42427 0.316 0.315 0.231 0.429 0.371 0.717 0.968 – 0.792 0.878
rs459552 0.162 0.175 0.180 0.165 0.111 0.386 0.314 0.270 – 0.965
rs465899 0.255 0.256 0.271 0.360 0.278 0.967 0.728 0.718 0.360 –

D′ values are shown above and r2 values below the diagonal.
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were two tailed and the significance level was set at pb0.05, after
Bonferroni correction.

Results

A total of 312 CRC patients and 270 controls were included in our
study. The allele and genotype frequencies of the ten SNPs are listed
in Table 1. The observed genotype distributions did not show any signif-
icant deviations from Hardy–Weinberg equilibrium in the control
subjects (data not shown). For SNP rs2019720, statistically significant
difference in genotype frequency was detected between cases and
controls (p=0.0046, p=0.046, after Bonferroni correction). SNP
rs6594646 showed a slight difference in genotype frequency before cor-
rection (p=0.046, p=0.46, after Bonferroni correction). Therewere no
significant associations for any of the other genetic polymorphisms.

For each pairwise combination of the SNPs, we calculated D′ and r2

in all the subjects as the metric of LD (shown in Table 2). Three pairs
of SNPs were revealed to be in strong LD (rs2019720-rs6594646,
rs41115-rs42427 and rs459552-rs465899). We therefore constructed
two-locus haplotypes with these combinations of markers (shown in
Table 3). Those haplotypes with an estimated frequency of less than
3% in both case and control groups were excluded from analysis.
Globally, no positive association with CRC was found for these haplo-
types (p=0.112, p=0.114, p=0.415, respectively). Haplotype analy-
sis combining all ten SNPs showed no significant differences (global
p=0.250).

Discussion

To explore the association of SNPs in the APC gene with CRC, we
conducted a case-control study in 582 Han Chinese subjects. In the
single-site tests for association, SNP rs2019720 appeared to be
Table 3
Estimated APC haplotype frequencies and association significance.

Haplotypea Case
frequency

Control
frequency

χ2 p value OR (95%CI)

Group 1: M1, M2
GG 0.701 0.654 2.522 0.112 1.25 (0.95–1.65)
AA 0.290 0.338 2.522 0.112 0.80 (0.61–1.05)
Global 0.112

Group 2: M7,M8
CG 0.144 0.186 2.503 0.114 0.75 (0.52–1.07)
TA 0.845 0.814 2.503 0.114 1.34 (0.93–1.92)
Global 0.114

Group 3: M9, M10
AC 0.063 0.085 1.714 0.190 0.73 (0.46–1.17)
TC 0.105 0.099 0.112 0.737 1.07 (0.72–1.61)
TT 0.828 0.816 0.402 0.526 1.11 (0.80–1.53)
Global 0.415

M1: rs2019720, M2: rs6594646, M7: rs41115, M8: rs42427, M9: rs459552, M10:
rs465899.

a Haplotypes with a frequency under 3% were excluded.
associated with CRC risk. We observed a significant difference in ge-
notype frequency (p=0.0046, p=0.046, after Bonferroni correction).
The genotype GG was more frequent in patients than in healthy con-
trols (53.3% versus 40.4%), suggesting that it might be a risk genotype
for CRC. The genotype AG of rs2019720 also contributed to the asso-
ciation (33.9% in cases versus 48.5% in controls), and might therefore
be a protective factor against CRC. However, no significant haplotype
associations were found.

In the past few years, genome-wide association studies (GWAS)
have identified several susceptibility loci for CRC [21]. Each variant
has a relatively small effect on CRC risk and a large part of the genetic
contribution remains unknown [22]. Furthermore, high-penetrance
genes including APC and the DNA mismatch repair (MMR) genes are
responsible only for the familial CRC syndromes [21]. Investigators
have proposed different models to explain the pathogeny of CRC. The
risk genotype found in our sample was quite common and therefore
consistent with the “common disease, common variant” hypothesis
[23].

TheAPC gene is 138.7 kb in size and composed of 15 exons. Ten SNPs
were examined in this study covering most of the APC region. Four
(rs2019720, rs6594646, rs4705486 and rs2464803) of the selected
markers were located in noncoding introns. Although lacking in pos-
sible coding or transcriptional activity, our data showed intronic
SNP rs2019720 to be a susceptibility locus. It can be implied that
rs2019720, probably together with other genetic variants, might some-
how be connected with functional effects that contribute to disease for-
mation. Among the other six exonic SNPs genotyped, rs459552 is a
missense variant while the remaining five (rs2229992, rs351771,
rs41115, rs42427 and rs465899) are synonymous polymorphic sites.
In a previous investigation including all the six markers, Chen at el.
demonstrated significant associations at rs2229992, rs41115 and
rs459552 in Taiwanese subjects [17]. Compared to the study by Chen
et al., our sample was much larger and thus had a lower probability of
false-positive results.

Most of the research evidence to date has centered on four APC
missense variants at codon 1307, 1317, 1822 and 2502 [16]. In FAP
patients, germ line mutations close to codon 1300 correlate with
LOH as the second ‘hit’ [24]. Protein-truncating APC changes tend to
occur within a particular region between codon 1250 and 1450
which is termed the mutation cluster region (MCR) [25]. The APC pro-
tein contains seven 20-amino acid repeats essential for β-catenin
regulation. Mutations near codon 1300 yield a truncated protein
product with only one 20-amino acid repeat, whereas other muta-
tions in the MCR result in varying numbers of subsequent repeats
[12]. Codon 1822 lies near the fifth β-catenin binding repeat [17].
SNP rs459552 at codon 1822 has been the most common missense
polymorphism [17,26–30]. In recent years, investigators have focused
on the interaction between rs459552 and lifestyle factors in colorec-
tal adenoma risk [16,31–34]. Both dietary fat intake and post-
menopausal hormone therapy (HRT) have been reported as potential
risk factors for colorectal adenoma or CRC. More research work will
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be needed to analyze the correlation between genetic and environ-
mental factors associated with CRC.

Conclusion

In summary, our results indicate that SNP rs2019720 of APCmight
be correlated with CRC in the Chinese Han population. This finding
needs to be tested in bigger samples and in other ethnic groups. To
clarify whether common APC variants are related to CRC susceptibili-
ty, genetic analyses with more saturated SNP coverage of the region
are necessary. The data we obtained may provide a reference for fu-
ture studies on the role of APC in the etiology of CRC.
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